Strictly positive definite reflection invariant functions
نویسندگان
چکیده
Strictly positive definite functions are used as basis functions for approximation methods in various contexts. Using a group theoretic interpretation of Bochner’s Theorem we give a sufficient condition for strictly positive definite functions on a semi-direct product which are invariant under the natural action of a given subgroup. As an application strictly positive definite, reflection invariant functions on Euclidean spaces are considered.
منابع مشابه
A meshless technique for nonlinear Volterra-Fredholm integral equations via hybrid of radial basis functions
In this paper, an effective technique is proposed to determine thenumerical solution of nonlinear Volterra-Fredholm integralequations (VFIEs) which is based on interpolation by the hybrid ofradial basis functions (RBFs) including both inverse multiquadrics(IMQs), hyperbolic secant (Sechs) and strictly positive definitefunctions. Zeros of the shifted Legendre polynomial are used asthe collocatio...
متن کاملInterpolation with reflection invariant positive definite functions
Concepts of abstract harmonic analysis can be used to provide a unifying framework for basis function methods, like radial basis functions in Euclidean spaces or zonal basis functions on the sphere. To illustrate how these concepts can be applied reflection invariant functions are considered. A specialization of the BochnerGodement Theorem leads to a characterization of suitable basis functions. §
متن کاملStrictly positive definite functions on spheres in Euclidean spaces
In this paper we study strictly positive definite functions on the unit sphere of the m-dimensional Euclidean space. Such functions can be used for solving a scattered data interpolation problem on spheres. Since positive definite functions on the sphere were already characterized by Schoenberg some fifty years ago, the issue here is to determine what kind of positive definite functions are act...
متن کاملStrictly Positive Definite Functions on Spheres
In this paper we study strictly positive definite functions on the unit sphere of the m-dimensional Euclidean space. Such functions can be used for solving a scattered data interpolation problem on spheres. Since positive definite functions on the sphere were already characterized by Schoenberg some fifty years ago, the issue here is to determine what kind of positive definite functions are act...
متن کاملStrictly positive definite functions on the complex Hilbert sphere
We write S∞ to denote the unit sphere of `, the set of all z in ` for which 〈z, z〉 = 1 (this set is often called the complex Hilbert sphere). A continuous complex-valued function f defined on the closed unit disc D := {ζ ∈ C : |ζ| ≤ 1} is said to be positive definite of order n on S∞ if, for any set of n distinct points z1, . . . , zn on S∞, the n×n matrix A with ij-entry given by f(〈zi, zj〉) i...
متن کامل